Advance Innovation Centre
  • AIC Knowledge @ EEC for All
  • 😎Logical Thinking
    • Karel Robot
    • Code to Flowchart
    • Play with Docker
    • CNX Software
  • MCU & Interfacing with Infineon PSOC™
    • Basic MCU Interfacing
      • Introduction to CY8CKIT-062S2-43012 Pioneer Kit
      • Development Environment Preparation
      • PSoC™ 6S2 Peripherals Interfacing (GPIO)
        • Hello World and LED Blinking
        • GPIO Principles
        • PSoC™ 6S2 GPIO-HAL LED Blink Lab
        • PSoC™ 6S2 GPIO-PDL LED Blink Lab
        • Button "Bounce" Principles
          • Push/Pull Button to Turn ON/OFF LED via HAL
          • Push/Pull Button to Turn ON/OFF LED via PDL
          • GPIO Button Interrupt via HAL
          • GPIO Button Interrupt via PDL
        • GPIO variables & functions
      • PSoC™ 6S2 Peripherals Interfacing (ADC, PWM)
        • PSoC™ 6S2 SAR ADC
          • ADC Principles
          • PSoC™ 6S2 with ADC Labs
            • Reading potentiometer sensor value via an ADC HAL
            • Reading potentiometer sensor value via an ADC PDL
        • PSoC™ 6S2 PWM & TCPWM
          • PWM Principles
          • PSoC™ 6S2 for PMW Function Labs
            • LED Brightness using PWM via HAL
            • LED Brightness using PWM via PDL
    • Sensor Interfacing and HMI
      • OLED Display
        • OLED Display Principles
        • Calling BDH’s OLED functions
        • Display ADC via Potentiometer on OLED
      • BDH Shell
        • Shell Principles
        • LED Blinking and CAPSENSE via BDH Shell
        • Adding "History" command
        • Adding "Reboot" command
        • CAPSENSE Button and Slider
          • CAPSENSE Button and Slider with Capsense Tuner
          • CAPSENSE Button and Slider using FreeRTOS
    • Serial Communication & Visualization
      • UART, I2C, SPI Communication via Infineon PSoC™6
      • BMX160 Sensor Communication via Infineon PSoC™6
        • Reading ADC via HAL with Potentiometer and Displaying GUI on Serial Studio
        • Reading XENSIV-DPS-3XX Pressure Sensor and Displaying GUI on Serial Studio
        • Motion Sensors GUI Integration via Serial Studio
    • IoT Connectivity & Data Analytics via Node-Red
      • Node-Red Installation
      • Setting MQTTS to MQTT Broker
      • Sending PSoC6’s sensor to MQTT (node-red)
    • Edge AI on PSoC™
      • Machine Learning on PSoC™6 via Edge-Impulse
    • Infineon PSoC™ Troubleshooting
  • IoT Development with Infineon PSOC™ & BDH Platform
    • PSoC™ IoT Development Kit
      • Introduction to CY8CKIT-062S2-43012 Pioneer Kit
      • Development Environment Preparation
        • Hello World and LED Blinking
    • IoT Connectivity
      • Node-Red Installation
      • Controlling PSoC™ LED using MQTT
      • Setting MQTTS to MQTT Broker
      • Sending PSoC6’s sensor to MQTT (node-red)
    • BDH IoT Connectivity
    • WireLinX™ IoT PLC
    • BDH X-Brain Data Analytics
      • PSoC6 Data Collection to CSV log file
    • Data Visualization
      • สร้าง Dashboard ด้วย Looker Studio
  • 🖥️Operation Systems
    • Prerequisites
      • Guideline from Ubuntu
        • Ubuntu and VSCode on WSL2
      • ติดตั้ง WSL 2
      • Run Ubuntu on VirtualBox7
    • Zero to Linux Hero
      • Computer OS Architecture
      • Anatomy of Linux System
        • UNIX/Linux History
        • UNIX/Linux Evolution
        • GNU Project
        • Linux OS Architecture
        • Command Line Interface (CLI)
          • Basic Commands
          • 😎Level up your Linux Shell
          • File & Dir. Commands
          • Searching Commands
          • 😎ChatGPT-based Terminal
          • SysAdmin Commands
          • Network Commands
          • Hacker Commands
        • Busybox
        • Shell Script
          • Awk Script
          • Bash Shell Script
            • Bash Snippets
            • Bash Useful Examples
      • Anatomy of Linux Kernel
        • Linux Kernel Principles
        • Linux Environment for Developer
      • Anatomy of Embedded Linux
        • Embedded Linux
        • Host & Target
        • Cross Toolchains
        • Bootloader
        • Building Embedded Linux
    • Linux OS Dev. Engineer
      • Process Management
        • Process Basic
        • Process State
        • Basic Process Mgmt. Commands
        • Advance Process Mgmt. Commands
        • Process API Programming
      • IPC
        • IPC Anatomy
        • Signal Programming
        • Pipe Programming
        • FIFO Programming
        • Msg. Queue Programming
          • System V
        • Share Memory Programming
          • System V
        • Socket Programming
      • POSIX Threads
        • Multi-tasking Basic
        • POSIX Thread Anatomy
        • Threading Programming
      • Applied IPC
        • Remote Commander
        • Multi-Remote Commanders
      • Process Synchronization
        • Mutex Programming
        • Semaphore Programming
      • Applied IPC with Semaphore
  • ⌚Embedded Systems Development
    • Introduction to ESD
      • Why's ESD?
      • What it use for?
      • How it works?
    • Enbedded System Development via PSoC6
      • Basic MCU Interfacing
        • Introduction to CY8CKIT-062S2-43012 Pioneer Kit
        • Development Environment Preparation
        • PSoC™ 6S2 Peripherals Interfacing (GPIO)
          • Hello World and LED Blinking
          • GPIO Principles
          • PSoC™ 6S2 GPIO-HAL LED Blink Lab
          • PSoC™ 6S2 GPIO-PDL LED Blink Lab
          • Button "Bounce" Principles
            • Push/Pull Button to Turn ON/OFF LED via HAL
            • Push/Pull Button to Turn ON/OFF LED via PDL
            • GPIO Button Interrupt via HAL
            • GPIO Button Interrupt via PDL
          • GPIO variables & functions
        • PSoC™ 6S2 Peripherals Interfacing (ADC, PWM)
          • PSoC™ 6S2 SAR ADC
            • ADC Principles
            • PSoC™ 6S2 with ADC Labs
              • Reading potentiometer sensor value via an ADC HAL
              • Reading potentiometer sensor value via an ADC PDL
          • PSoC™ 6S2 PWM & TCPWM
            • PWM Principles
            • PSoC™ 6S2 for PMW Function Labs
              • LED Brightness using PWM via HAL
              • LED Brightness using PWM via PDL
      • Sensor Interfacing and HMI
        • OLED Display
          • OLED Display Principles
          • Calling BDH’s OLED functions
          • Display ADC via Potentiometer on OLED
        • BDH Shell
          • Shell Principles
          • LED Blinking and CAPSENSE via BDH Shell
          • Adding "History" command
          • Adding "Reboot" command
          • CAPSENSE Button and Slider
            • CAPSENSE Button and Slider with Capsense Tuner
            • CAPSENSE Button and Slider using FreeRTOS
      • Serial Communication & Visualization
        • UART, I2C, SPI Communication via Infineon PSoC™6
        • BMX160 Sensor Communication via Infineon PSoC™6
          • Reading ADC via HAL with Potentiometer and Displaying GUI on Serial Studio
          • Reading XENSIV-DPS-3XX Pressure Sensor and Displaying GUI on Serial Studio
          • Motion Sensors GUI Integration via Serial Studio
    • Edge Computing and IoT Connectivity
    • Cloud-Based Data Analytics and Digital Twin
    • Edge Vision AI
    • Resources
      • Basic Hardware and Firmware
        • Environment Preparation
          • การติดตั้งโปรแกรม Arduino IDE
            • ตัวอย่างการเริ่มต้นใช้งาน Arduino IDE
          • การติดตั้งโปรแกรมสำหรับใช้งานเครื่องมือวัด NI MyDAQ
            • ตัวอย่างการตั้งค่าใช้ Digital Multimeter -NI ELVISmx
            • ตัวอย่างการตั้งค่าใช้ Oscilloscope-NI ELVISmx
          • ติดตั้งโปรแกรม KingstVIS
        • Basic measurement
          • Basic Digital and Analog I/O
            • LAB: Basic Digital Input/Output
            • LAB: Basic Analog Input/Output
          • Waveform
            • LAB: Oscilloscope
            • LAB: Oscilloscope and Function Generator
            • LAB: Pulse Width Modulation (PWM)
              • Homework
        • Interfacing and Communication
          • LAB: UART, RS485, RS232 Protocol
          • LAB: I2C Protocol
            • HOMEWORK
          • LAB: SPI Protocol
      • IoT Connectivity
        • Example: IoT with MQTT on Node-red
        • Data logger
        • LAB: Data Visualization
  • 🛠️C/C++ for Embedded Programming
    • Development Environment Preparation
      • ติดตั้ง WSL 2
      • ติดตั้ง Ubuntu environment
      • ติดตั้งโปรแกรม Visual Studio Code
      • การเชื่อมต่อ Virtual studio code เข้ากับ WSL
      • ติดตั้ง docker on WSL
    • Principle C/C++ Programming
      • Get started with C++
      • Makefile
        • Makefile Examples
      • Compiling and running
        • How to create a program that you can enter inputs.
          • Lab 1 Exercise
      • Arguments
        • Command line arguments in C and C++
      • signed and unsigned data types
      • Variable and Operator
      • If and If else
      • Loop, Infinite loop, and flag
        • Loop and Flag exercise
      • Array
        • Get to know with arrays
        • Implement example
      • Vector
    • Object Oriented Programming (OOP) in C++
      • Class and Object
      • Encapsulation and Abstraction
      • Polymorphism and Inheritance
    • C/C++ Preprocessing
      • Macro
        • Quiz Macro
      • File Inclusion
      • Conditional Compilation
      • Pragma directive
        • Quiz Pragma
    • String in C++
      • Concatenation
      • Split
    • Type conversions for C/C++
      • Conversion using Cast operator
    • Error handling
    • Data logger
      • การสร้างไฟล์และเขียนไฟล์
      • การอ่านไฟล์
      • การเก็บข้อมูลกับTime stamp
    • High performance programing
      • Multi-task and Multi-thread
        • Multi-threading example
      • Mutex
      • Queue
      • OpenCV
    • C/C++ Techniques
      • Makefile in action
      • Object Oriented Programming (OOP) in C++
        • Class and Object
        • Encapsulation and Abstraction
        • Polymorphism and Inheritance
      • C/C++ Preprocessing
        • Macro
          • Quiz Macro
        • File Inclusion
        • Conditional Compilation
        • Pragma directive
          • Quiz Pragma
      • Binary, Octal and Hexadecimal Numbers
      • Array and properties of an array
        • Get to know with arrays
        • Implement example
      • What's next?
  • 🤖Artificial Intelligence (AI)
    • VAMStack Design House, BUU
    • Data Analytics
      • Data cleansing
      • Data analytics
      • Data analytic exercise
    • Machine Learning
      • Neural Network Layers
      • Machine learning type
      • Dataset
      • Using Edge Impulse for AI Model
    • Basic Image Processing
      • Computer Vision using Python Language
        • Installation
        • Computer Vision Basics
          • Pixel and Color
          • Draw image
          • Basic Image processing
          • Morphology Transformations
          • Gaussian blur
          • Simple Thresholding
          • Contour
          • Canny edge detection
        • Case Study
          • Coin counting
          • Color detection & tracking
        • VAM_CV SDK
  • ⚙️FPGA Design and Development
    • Verilog HDL via Vivado IDE
      • LAB1: Setting Environment and Create Project
        • Create Vivado Project
      • LAB2: Hardware Description Language Work Flow
        • Simulation code
      • LAB3: Design HDL Project
        • Top Level Design
        • Top-level Simulation
      • LAB4: Asynchronous VS Synchronous Circuit
        • Simulation Synchronous counter
    • C/C++ Programming on Ultra96v2 FPGA Board
      • Application C/C++ on Ultra96v2 Part 1
        • Design Overview
        • Step 1 - Burn the image to SD card
        • Step 2 - Bring up Ultra96v2
        • Step 3 - Installing the Vitis-AI runtime packages
      • Application C/C++ on Ultra96v2 Part 2
        • STEP 1 : Setting auto boot Wifi
        • STEP 2 : How to working on Embedded
        • STEP 3 : How to run the test code
  • 🤖Robotics
    • Dobot Magician
      • Instruction of Dobot
      • Software Download
      • Basically of Program
        • Teaching and Playback
        • Write and Draw
        • LaserEngraving
        • 3D Printer
    • Robotino
      • Software Download
        • Robotino View
        • Robotino SIM
      • Charging
      • Connecting
      • Follow Line example
        • Basic block in Follow Line
    • RaspBlock
      • Get Started with Raspblock
  • 🚩Special Topics
    • Node-Red
      • Set up Raspberry Pi
      • Install node red in Raspberry Pi
      • Get started with Node Red
        • Open node-red
        • Turn off node red
        • Install Dashboard on Node-red
        • Use node red to show message
        • Using Ultrasonic sensor with node-red
    • IoT Cloud
      • Overview
        • How do they work?
          • Basic Knowlege
      • Installations
        • Install Docker
        • Install Mosquitto Broker
        • Install InfluxDB
        • Install Telegraf
        • Install Grafana
      • Get Sensor Value and Send to MQTT
        • Connect ESP3266 to sensor
        • Connect ESP3266 to MQTT
      • Integration
    • Senses IoT
      • SENSES IoT Platform
      • LAB8: MCU send data to IoT platform
    • CrowPi Dev Kit
      • Raspberry Pi with CrowPi
      • Remote to Raspberry Pi
      • Cross-Compile
        • Lab 1: Programming and cross complier
      • Hardware and Interfaces Usage CLI
        • LAB: Usage GPIO via CLI
        • LAB: Scan I2C bus via CLI
      • Python library for Crow Pi
      • wiringPi library (C) for CrowPi
        • Lab2: Crowpi and sensors
    • LVGL Development
      • LVGL - Light and Versatile Embedded Graphics Library
        • Setting program for LVGL Simulator
        • Get started with LVGL simulator
        • Example Library of LVGL
        • Create your own screen
          • Exercise
        • Style
          • Exercise
        • Event
    • Docker OS
      • Docker OS Part 1
        • Part 1 : Installation
        • Part 2 : Basic Docker OS and Linux CLI
      • Docker OS Part 2
        • Part 1 : Docker communication
        • Part 2 : Docker compose
      • Application Gstreamer on devcontainer
        • STEP 1 : Setting gstreamer environment
        • STEP 2 : Create the Gstreamer element on template
        • STEP 3 : Testing and application on your gst element
  • 🤟Recommended by AIC
    • Skill Roadmap
      • Embedded Engineer
      • Developer
    • Hardware Programming
    • Embedded Programming
    • General-propose Programming
    • Algorithmica
    • Thai Expert Knowledge
    • RT-Thread University Program
      • Infineon PSoC6
      • Kernel
        • Kernel Basics
        • Thread Management
        • Clock Management
        • Inter-thread synchronization
        • Inter-thread communication
        • Memory Management
        • Interrupt Management
        • Kernel porting
        • Atomic Operations
        • RT-Thread SMP
        • Kernel API Changelog
      • Tools
      • Devices & Drivers
        • SENSOR Devices
        • Touch Equipment
        • CRYPTO Devices
        • AUDIO Devices
        • Pulse Encoder Devices
      • Components
        • C Library (libc)
        • ISO/ANSI C Standard
        • POSIX Standard
          • FILE (File IO)
          • Pthread
          • Timer
          • IPC Semaphore
          • IPC Message Queues
          • Dynamic Modules
        • Network Components
          • FinSH Console
          • FAL: Flash Abstraction Layer
          • Virtual File System
          • tmpfs: temporary file system
          • ulog log
          • utest testing framework
          • Power Management
          • RT-Link
        • Software Packages
          • Internet of Things
            • MQTT-umqtt
            • Telnet
          • Tools
            • SystemView
            • SEGGER_RTT
          • LVGL Manual
            • Touch Screen Driver
      • Demo
        • Infineon Gateway
        • Handwriting Recognition (MNIST)
        • Object Detection (Darknet)
        • ROS using RT-Thread
        • Control the car using RT-Thread
        • LiDAR via RT-Thread
        • Detection via RT-Thread and ROS
        • Sensor Driver Development Guide
Powered by GitBook

Assoc. Prof. Wiroon Sriborrirux, Founder of Advance Innovation Center (AIC) and Bangsaen Design House (BDH), Electrical Engineering Department, Faculty of Engineering, Burapha University

On this page
  • Target audience of this article
  • Introduction
  • How to use
  • Operation effect
  • Precautions
  • Summarize
  • Special Thanks

Was this helpful?

  1. Recommended by AIC
  2. RT-Thread University Program
  3. Components
  4. Software Packages
  5. Tools

SEGGER_RTT

PreviousSystemViewNextLVGL Manual

Last updated 7 months ago

Was this helpful?

  • During development, jlink's hardware debugger is often used for debugging ( can also be flashed to JLINK).

  • Sometimes you want to print some information in an interrupt, but printf cannot print in an interrupt.

  • In the early stage of porting RT-Thread, the UART driver was not fully ready, and I wanted to use rt_kprintf for printing.

  • The MCU being developed does not want the console to monopolize one UART.

software package is developed based on SEGGER's J-Link RTT . It transmits the console port of RT-Thread through , so as to achieve a more convenient interaction through the console port, which can be completely used to replace the UART port. Here RTT is Real Time Transferthe abbreviation of .

The working principle of SEGGER_RTT is shown in the following figure:

jlink

J-LINK can query the value of a specific variable by querying the variable. The SEGGER_RTT tool also uses this principle.

The features of the SEGGER_RTT package are summarized as follows:

  • Can print in interrupt

  • Can cache boot log

  • Can receive finsh commands

  • Multi-platform support

  • Independent of the operating system, a single bare metal machine can run SEGGER_printf

  • Can support the use of multiple terminal ports and print different logs

  • Can be used directly without initialization

  1. Select the corresponding software package in menuconfig to download the software package

  1. It should be noted that after selecting the software package, drv_rtt.c is equivalent to adding a serial device similar to UART, namedjlinkRtt

If you want to replace it with the console port, you need to find the following two codes and modify them:

  • rt_hw_jlink_rtt_init must rt_console_set_device(RT_CONSOLE_DEVICE_NAME);be called before initialization

  • The console in menuconfig RT-Thread Kernel → Kernel Device Objectshould also be set tojlinkRtt

#define RT_CONSOLE_DEVICE_NAME "jlinkRtt"
rt_hw_jlink_rtt_init();
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);copymistakeCopy Success

What needs to be noted here is the option at the bottom, which refers to the address of the variable &_SEGGER_RTT in the code. Some chips support automatic address recognition, while some chips do not. You can view the address of the variable through debug, or you can set the RAM search range according to your MCU to let JLINK poll the address in RAM. For example, STM32 can set the RAM address search range

0x20000000 0x1000copymistakeCopy Success
  1. You need a JLINK connection. It can be used for testing on STM32 or Nordic development boards. Other JLINKs should also be universal, which saves the occupation of the debugging UART serial port. You can use this port to print logs or console debugging.

  2. As long as your development board can use JLINK to debug and view variables, you can use this package. RTT is essentially just polling the global variable _SEGGER_RTT. So it is not particularly sensitive to the architecture, as long as your board can be debugged with JLINK.

menuconfig

Install a set of tools. After installation, open J-Link RTT Viewerthe tool and make the following settings to select the corresponding device.

RTT_Viewer

seggerRTT_console

If you have STLINK, you can choose to flash it to JLINK. Reference connection Of course, after flashing it to JLINK, your JLINK can only operate STM32 authorized devices, and devices from other manufacturers are not supported.

I think that when developing a chip that can be debugged with JLINK, it is a relatively quick thing to use console debugging through segger_rtt in the early stage. For example, when making a new BSP, you can first use the RTT method for console debugging. Similarly, this kind of console can print the corresponding log in the interrupt, which is also a relatively convenient thing. In short, I feel that there are still many places where it is needed, so I recommend it to everyone. Of course, the functions of SEGGER_RTT are not limited to this. In fact, there are still many functions that have not been fully developed, such as some color printing and terminal multiplexing. You are welcome to give comments and requirements on the software package. If you have any suggestions, you can mention them in the issue of the software package. If you are interested in the SEGGER_RTT software package, you can refer to and .

This software package refers to the software package , as well as some guidance and suggestions from BLE community partners.

🤟
How to use
JLINK
Operation effect
Precautions
segger st-link.
Summarize
SEGGER_RTT Exploration
SEGGER_RTT TOOL
Special Thanks
SystemView
Target audience of this article
ST-LINK
Introduction
The SEGGER_RTT
J-Link RTT